Downregulation of store-operated Ca2+ entry during mammalian meiosis is required for the egg-to-embryo transition.
نویسندگان
چکیده
A specialized Ca(2+) transient at fertilization represents the universal driver for the egg-to-embryo transition. Ca(2+) signaling remodels during oocyte maturation to endow the egg with the capacity to produce the specialized Ca(2+) transient at fertilization, which takes the form of a single (e.g. Xenopus) or multiple (e.g. mouse) Ca(2+) spikes depending on the species. Store-operated Ca(2+) entry (SOCE) is the predominant Ca(2+) influx pathway in vertebrate oocytes, and in Xenopus SOCE completely inactivates during meiosis. Here, we show that SOCE is downregulated during mouse meiosis, but remains active in mature metaphase II eggs. SOCE inhibition is due to a decreased ability of the Ca(2+) sensor STIM1 to translocate to the cortical endoplasmic reticulum domain and due to internalization of Orai1. Reversing SOCE downregulation by overexpression of STIM1 and Orai1 prolongs the Ca(2+) oscillations at egg activation and disrupts the egg-to-embryo transition. Thus, SOCE downregulation during mammalian oocyte maturation is a crucial determinant of the fertilization-specific Ca(2+) transient, egg activation and early embryonic development.
منابع مشابه
Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis
The egg's competency to activate at fertilization and transition to embryogenesis is dependent on its ability to generate a fertilization-specific Ca(2+) transient. To endow the egg with this capacity, Ca(2+) signals remodel during oocyte maturation, including inactivation of the primary Ca(2+) influx pathway store-operated Ca(2+) entry (SOCE). SOCE inactivation is coupled to internalization of...
متن کاملInduction of maturation-promoting factor during Xenopus oocyte maturation uncouples Ca2+ store depletion from store-operated Ca2+ entry
During oocyte maturation, eggs acquire the ability to generate specialized Ca(2+) signals in response to sperm entry. Such Ca(2+) signals are crucial for egg activation and the initiation of embryonic development. We examined the regulation during Xenopus oocyte maturation of store-operated Ca(2+) entry (SOCE), an important Ca(2+) influx pathway in oocytes and other nonexcitable cells. We have ...
متن کاملConventional PKCs regulate the temporal pattern of Ca2+ oscillations at fertilization in mouse eggs
In mammalian eggs, sperm-induced Ca2+ oscillations at fertilization are the primary trigger for egg activation and initiation of embryonic development. Identifying the downstream effectors that decode this unique Ca2+ signal is essential to understand how the transition from egg to embryo is coordinated. Here, we investigated whether conventional PKCs (cPKCs) can decode Ca2+ oscillations at fer...
متن کاملCalcium influx and sperm-evoked calcium responses during oocyte maturation and egg activation
Under the guidance and regulation of hormone signaling, large majority of mammalian oocytes go through twice cell cycle arrest-resumption prior to the fertilized egg splits: oocyte maturation and egg activation. Cytosolic free calcium elevations and endoplasmic reticulum calcium store alternations are actively involved in triggering the complex machineries and events during oogenesis. Among the...
متن کاملEGG-3 Regulates Cell-Surface and Cortex Rearrangements during Egg Activation in Caenorhabditis elegans
Fertilization triggers egg activation and converts the egg into a developing embryo. The events of this egg-to-embryo transition typically include the resumption of meiosis, the reorganization of the cortical actin cytoskeleton, and the remodeling of the oocyte surface. The factors that regulate sperm-dependent egg-activation events are not well understood. Caenorhabditis elegans EGG-3, a membe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 126 Pt 7 شماره
صفحات -
تاریخ انتشار 2013